Unit III Lesson 4 Ex3

y’’’+4y’=excos(2x)

 Solution:

The homogeneous equation is y’’’+4y’=0 with characteristic equation m3+4m=0, so m=0 or m=+/-2i. The solution of the homogeneous equation is yc=C1+C2cos(2x)+C3sin(2x).

The equation in annihilator form is (D3+4D)y=excos(2x) or annihilating the right side , we get (D2-2D+5) (D3+4D)y=0 which has characteristic equation:

(m2-2m+5)(m3+4m)=0 with roots m=0,m=2i,m=-2i,m=1+2i,m=1-2i.

The solution is y=C1+C2cos(2x)+C3sin(2x)+C4excos(2x)+C5exsin(2x).

All of C1+C2cos(2x)+C3sin(2x) is part of the complementary solution, so yp is of form:

yp= Aexcos(2x)+Bexsin(2x).

Therefore yp’= -2Aexsin(2x)+Aexcos(2x)+2Bexcos(2x)+Bexsin(2x) and

yp’’=-4Aexcos(2x)-2Aexsin(2x)-2Aexsin(2x)+Aexcos(2x)-4Bexsin(2x)+2Bexcos(2x)+ 2Bexcos(2x)+Bexsin(2x)

Which simplifies to:

yp’’=-3Aexcos(2x)-4Aexsin(2x)-3Bexsin(2x)+4Bexcos(2x)

Differentiating again (!) yields

yp’’’=6Aexsin(2x)-3Aexcos(2x)-8Aexcos(2x)-4Aexsin(2x)-6Bexcos(2x)-3Bexsin(2x)-8Bexsin(2x)+4Bexcos(2x)

Which simplifies to:

yp’’’=2Aexsin(2x)-11Aexcos(2x)-2Bexcos(2x)-11Bexsin(2x).

Substituting back into the original equation gives:

2Aexsin(2x)-11Aexcos(2x)-2Bexcos(2x)-11Bexsin(2x)+

4(-2Aexsin(2x)+Aexcos(2x)+2Bexcos(2x)+Bexsin(2x)=excos(2x)

Collecting up like terms, we have:

exsin(2x)(2A-11B-8A+4B)+excos(2x)(-11A-2B+4A+8B)= excos(2x)

So we get the system of equations:

The solution is A=-7/85, B=6/85.

The solution to our problem is y=yc+yp or

I hope I don’t have to check that answer anytime soon! Actually I did check it using Derive! AND it was correct!! (It doesn't take too many problems like this to make a dozen.)

BACK