Unit III Lesson 4 Ex1

Show that (D-A)n annihilates xn-1eAx.

Solution: (proof by induction)

(n=1)

D eAx=A eAx, so (D-A) eAx=A eAx-A eAx=0 so (D-A) annihilates eAx

(n>1)

We assume the theorem is true for the n-1 case, that is, (D-A)n-1 annihilates xn-2eAx.

Knowing that (D-A)n-1xn-2eAx=0, we want to show that (D-A)n xn-1eAx=0.

Note that (D-A)n xn-1eAx=(D-A)n xn-2xeAx and with algebra, =(D-A)n-1xn-2(D-A)xeAx

Examining (D-A)xeAx, we get (D-A)xeAx=AxeAx+eAx-AxeAx=eAx.

Substituting this back into (D-A)n-1xn-2(D-A)xeAx, we get (D-A)n-1xn-2eAx which is zero by our assumption.

QED.

BACK